1. பிளக்குச்செல்வு

1) பிளக்குச்செல்வு

- AB என்னும் \(q \) பிளக்குச்செல்வு +q பிளக்குச்செல்வு கூட்டம் 2d பிளக்குச்செல்வு பிளக்குச்செல்வு தரும் பிளக்குச்செல்வு

- P பிளக்குச்செல்வு என்னும் \(q \) பிளக்குச்செல்வு ஒன்றாகும் இமே பிளக்குச்செல்வு

- AB என்னும் q பிளக்குச்செல்வு +q பிளக்குச்செல்வு 2d பிளக்குச்செல்வு பிளக்குச்செல்வு தரும் பிளக்குச்செல்வு

\[E = \frac{q}{4\pi \varepsilon_0} \left(\frac{q}{(r-d)^2} \right) \text{ (BP பிளக்குச்செல்வு) } \]

\[E = \frac{q}{4\pi \varepsilon_0} \left(\frac{q}{(r+d)^2} \right) \text{ (P A பிளக்குச்செல்வு) } \]

\[E = E_1 + (-E_2) \]

\[E = \frac{q}{4\pi \varepsilon_0} \frac{4rd}{(r^2-d^2)^2} \text{ (BP பிளக்குச்செல்வு) } \]

\[E = \frac{q}{4\pi \varepsilon_0} \frac{2p}{r^3} \text{ (BP பிளக்குச்செல்வு) } \]

\[p = q2d \]

\[E \text{ என்னும் பிளக்குச்செல்வுத் தரும் பிளக்குச்செல்வுத் தரும் பிளக்குச்செல்வுத் தரும் } \]

2) பிளக்குச்செல்வு

- AB என்னும் \(q \) பிளக்குச்செல்வு +q பிளக்குச்செல்வு கூட்டம் 2d பிளக்குச்செல்வு பிளக்குச்செல்வு தரும் பிளக்குச்செல்வு

- P பிளக்குச்செல்வு என்னும் \(q \) பிளக்குச்செல்வு ஒன்றாகும் இமே பிளக்குச்செல்வு

\[E_1 \sin \theta \]

\[E_2 \sin \theta \]
\[E_1 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2 + d^2} \quad (\text{B P முறை}) \]

\[E_2 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{(r^2 + d^2)^{3/2}} \quad (\text{P A முறை}) \]

\[\text{லறிக} E_1 \sin \theta \text{ முறை } E_2 \sin \theta \text{ ஸோமாதிக் அட்சுக்கு வேண்டும் வேப்பின்மனு.} \]

\[\text{லறிக} E_1 \cos \theta \text{ முறை } E_2 \cos \theta \text{ குறுக்குத்துக் பிள்ளை அட்சுக்கு.} \]

\[E_1 = 2 E_1 \cos \theta \quad (E_1 = E_2) \]

\[\cos \theta = \frac{d}{\sqrt{r^2 + d^2}} \]

\[E = \frac{q}{4 \pi \varepsilon_0 (r^2 + d^2)^{3/2}} \]

\[E = \frac{p}{4 \pi \varepsilon_0 (r^2 + d^2)^{3/2}} \quad (p = q2d) \]

\[E = \frac{p}{4 \pi \varepsilon_0 r^3} \quad (d \ll r) \]

\[E \text{ என்பது } q \text{ முறை } E_1 \text{ முறை } E_2 \text{ முறை இடைநுட்பச் சிறும்பலம்.} \]

\[A \text{B என்பது } q \text{ முறை } +q \text{ முறைகளால் } 2d \text{ ஓட்டலும் பொருள் தொகுதிகள் நொய்வல்லச் சுமை, } q \text{ முறை } \]

\[P \text{ என்பது } q \text{ முறை நொடையுள்ளது.} \]

3) பைங்குத்துக் கூறுகள் \[E_1 \sin \theta \text{ முறை } E_2 \sin \theta \text{ முறை இடைநுட்பச் சிறும்பலம்.} \]

\[AB \text{ என்பது } -q \text{ முறை } +q \text{ முறைகளால் } 2d \text{ ஓட்டலும் பொருள் } q \text{ முறை } \]

\[P \text{ என்பது } q \text{ முறை நொடையுள்ளது.} \]

\[V_1 = \frac{1}{4 \pi \varepsilon_0} \left(\frac{q}{r_1} \right) \]

\[V_2 = \frac{1}{4 \pi \varepsilon_0} \left(-\frac{q}{r_2} \right) \]

\[V = \frac{q}{4 \pi \varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \]

\[r_1^2 = r^2 + d^2 - 2rd \cos \theta \text{ என்று ஓட்டலும் வெளிப் புற } \frac{1}{r_1} \text{ குறுக்குத்துப் பிள்ளை} \]

\[\frac{1}{r_1} = \frac{1}{r}(1 + d \cos \theta) \]
\[r_2^2 = r^2 + d^2 - 2rd \cos(180 - \theta) \] என்று பராமார் விளக்கின்றார் \(\theta \leq 1 \) முதல்வரை போன்று.

\[\frac{1}{r_2} = \frac{1}{r} - \frac{d}{r} \cos \theta \]

\[V = \frac{q_2d}{4\pi \varepsilon_0} \frac{\cos \theta}{r^2} \]

\[V = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} \]

\[\theta = 0^\circ \text{ என்று, } \cos 0^\circ = 1, \quad V = \frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 180^\circ \text{ என்று, } \cos 180^\circ = -1, \quad V = -\frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 90^\circ \text{ என்று, } \cos 90^\circ = 0, \quad V = 0 \]

4) முன்னேற்ற - பாரை அண்மைப்படுத்துவதற்குள்ளே, அமைப்பு மற்றும் கணப்படும் விதமும் விளக்கும் விளக்கில்.

தனியன்பாட்டின் விளக்கம்:

\[\mathbf{V} = \frac{q_2d}{4\pi \varepsilon_0} \frac{\cos \theta}{r^2} \]

\[\mathbf{V} = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} \]

\[\theta = 0^\circ \text{ என்று, } \cos 0^\circ = 1, \quad \mathbf{V} = \frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 180^\circ \text{ என்று, } \cos 180^\circ = -1, \quad \mathbf{V} = -\frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 90^\circ \text{ என்று, } \cos 90^\circ = 0, \quad \mathbf{V} = 0 \]

அடுத்து:

\[\mathbf{V} = \frac{q_2d}{4\pi \varepsilon_0} \frac{\cos \theta}{r^2} \]

\[\mathbf{V} = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} \]

\[\theta = 0^\circ \text{ என்று, } \cos 0^\circ = 1, \quad \mathbf{V} = \frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 180^\circ \text{ என்று, } \cos 180^\circ = -1, \quad \mathbf{V} = -\frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 90^\circ \text{ என்று, } \cos 90^\circ = 0, \quad \mathbf{V} = 0 \]

முறைந்து:

\[\mathbf{V} = \frac{q_2d}{4\pi \varepsilon_0} \frac{\cos \theta}{r^2} \]

\[\mathbf{V} = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} \]

\[\theta = 0^\circ \text{ என்று, } \cos 0^\circ = 1, \quad \mathbf{V} = \frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 180^\circ \text{ என்று, } \cos 180^\circ = -1, \quad \mathbf{V} = -\frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 90^\circ \text{ என்று, } \cos 90^\circ = 0, \quad \mathbf{V} = 0 \]

இவற்றை ஆராயும்போது, காற்றின் தூண்கள் பெற்றும் பைட்டிச்சம் விளக்கம் விளக்கும் விளக்கில்.

பாலன்:

\[\mathbf{V} = \frac{q_2d}{4\pi \varepsilon_0} \frac{\cos \theta}{r^2} \]

\[\mathbf{V} = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} \]

\[\theta = 0^\circ \text{ என்று, } \cos 0^\circ = 1, \quad \mathbf{V} = \frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 180^\circ \text{ என்று, } \cos 180^\circ = -1, \quad \mathbf{V} = -\frac{p}{4\pi \varepsilon_0 r^2} \]

\[\theta = 90^\circ \text{ என்று, } \cos 90^\circ = 0, \quad \mathbf{V} = 0 \]
5) காஸ் லிதிப்படி காஸ் லிதி ப஫ாத்தப் பான்பாடுகளை விளக்குதல்.

c. முடிலியா என்பது செந்நீல் பான்பாடு ப஫ாத்தப் பான்பாடு என்பதைக் குறிக்கும். ப஫ாத்தப் பான்பாடு ப஫ாத்தப் பான்பாடு அலம்படியாக ஒப்பிடுவதற்கு காஸ் லிதிப்படி $\phi = \frac{q}{\epsilon_0}$

பான்பாடுகள்:

1. முடிலியா என்பது செந்நீல்களை குறிக்கும்.

 $\text{இருதயத்தின் வெப்பாபர்கள் வெப்பாபர்கள் வெப்பாபர்கள்}$

 $\phi = E \cdot ds \cdot \cos \theta$

 $\phi = E \cdot ds \quad (\theta = 0, \cos 0 = 1)$

 $q = \lambda l$

 $\phi = \frac{q}{\epsilon_0}$

 $E(2\pi l) = \frac{\lambda}{\epsilon_0}$

 $E = \frac{\lambda}{2\pi r \epsilon_0}$

 காஸ் லிதிப்படி ப஫ாத்தப் பான்பாடு என்பது, ப஫ாத்தப்பிள்ளை கிளம்பன்பகுதியான அருகில் வெப்பாபர்களை அட஫கிமத்து.

 காஸ் லிதிப்படி ப஫ாத்தப் பான்பாடு என்பது, ப஫ாத்தப்பிள்ளை கிளம்பன்பகுதியான அருகில் வெப்பாபர்களை அட஫கிமத்து.
II. பின்னூட்டு பகற்று பாத்திரங்கள், பாதுகாப்பு பாத்திரங்களை உருவாக்கி விளக்கும்:

- σ பின்னூட்டு பாதுகாப்பு காலத்திலிருந்து பாதுகாப்பு காலம்
- பின்னூட்டு பாதுகாப்பு காலத்திலிருந்து, 2r சுற்று, A கருவம் பாதுகாப்பு காலத்திலிருந்து A கருவம் பாதுகாப்பு
- P, P' பாதுகாப்பு காலத்திலிருந்து சுமாராக பாதுகாப்பு காலத்திலிருந்து
- வயலைகள் பாதுகாப்பு வடிவம் φ = [∫E ds] + [∫E ds] (θ = 0, cos 0 = 1)
- φ = EA + EA = 2EA
- கருவாக்கப்பட்டு பாதுகாப்பு காலத்திலிருந்து பாதுகாப்பு காலம் q = σA
- கருவாக்கப்பட்டு வடிவம் φ = q/ε₀
- 2 EA = σA/(2πε₀)
- E = σ/(2πε₀)

III. இடைநிலையம் பின்னூட்ட பகற்று படையை குறிப்பிட்டால் பிள்ளைகள்.

+σ
+ + + + E ₁ (+)
+ + + + P₁
+ + + + E ₂ (-)

-σ
- - - - E₁ (+)
- - - - P₂
- - - - E₂ (-)

• இடைநிலையம், பாதுகாப்பு காலம் பின்னூட்ட பகற்று படையை குறிப்பிட்டு +σ காலத்தில் பின்னூட்டிய கருவாக்கப்பட்டதாக.
• பிள்ளைப்பொழுது E = σ/(2πε₀)
a. தகடுகளுக்கு நடுகல் உள்ளாக்கில் ஫ின்னூட்டு:
\[E = \frac{\sigma \epsilon_0}{2r_0} - \frac{\sigma}{2r_0} = 0 \]

b. தகடுகளுக்கு பலரிக்கும் உள்ளாக்கில் ஫ின்னூட்டு:
\[E = \frac{\sigma \epsilon_0}{2r} - \frac{\sigma}{2r_0} \]

IV. எிீ஭ான் ஫ின்னூட்ைம் பபற்மக் ககாரலடிலக் கூட்டினால் ஏற்படும் ஫ின்னூட்ைம்:

a) ககாரலடிலக் கூட்டிற்கு பலரிக்கும் உள்ளாக்கில்:
 - \(R \) எல்லை முன்னேற்பாகம் பாரம்பரியக் குழு காரில்.
 - காரில் காரணிகு வரை ஓவிய காரணியன் ஒன்றும் தான் ஏற்பாட்டில் பாபாண்டு எல்லையாகவும் இருக்கும்.
 - பாபாண்டு, பலரிக்கும் \(E \) குறுகை பலரிக்கும்.
 - பலரிக்கும் \(\phi = \int E \cdot ds \)
 - \(\phi = E(4\pi r^2) \)
 - \(\phi = \frac{q}{\epsilon_0} \)
 - \(E = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \)

b) பாபாண்டு பெரிய காரை காட்சிக் குழு:
\(E = \frac{1}{4\pi \epsilon_0} \frac{q}{R^2} (r = R) \)

c) காரமோ காரைக் குழு காரை புனைவுக்கு வந்து காரைப் புனைவுக்கு வந்து:
 - காரமோ காரைக் குழுக்கு முன்னேற்பாகம் \(r \) எல்லை பாரம்பரியக் காரணியன் ஒன்றும் எல்லையாகவும் இருக்கும்.
 - பலரிக்கும் பலரிக்கும்
 \(\phi = E(4\pi r^2) \)
 - காரணியன் பலரிக்கும் புனைவுக்கு வந்து \(q = 0 \)
 - \(\phi = \frac{q}{\epsilon_0} \)
 - \(E = 0 \)

- காரமோ காரைக் குழு காரணியன் புனைவுக்கு வந்து புனைவு வழி.
6) பின்புத்திகள் ஓர்பாடுகள் மற்றும் பல்க விளையாட்பின் பக்க விளையாட்பின் ஒருங்கல் விளையாட்பின் பக்க விளையாட்டிகள்

பக்கவிளையாட்பின் பின்புத்திகள்

- C_1, C_2, C_3 என்னும் பின்புத்திகள் ஓர்பாடுகள் மற்றும் விளையாட்பின் ஒருங்கல் விளையாட்டிகள்
- பின்புத்திகள் ஓர்பாட்பெடுப்பு
- பின்புத்திகள் விளையாட்பெடுப்பு

$V = V_1 + V_2 + V_3$

$V_1 = \frac{q}{C_1}$, $V_2 = \frac{q}{C_2}$, $V_3 = \frac{q}{C_3}$

$V = q \left[\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right]$
€, €, € என்ம காண்ை மூன்று காண்ையின் படி தையாராகிய நான்கு திண்மகள் தொகுப்புகளாக உருவாக்கப்பட்டுள்ளன.

பாதுகாப்பின் பாதுகாப்பிற்கு பங்களித்து காண்ை $q = q_1 + q_2 + q_3$

$q_1 = C_1V, \ q_2 = C_2V, \ q_3 = C_3V$

$q = (C_1 + C_2 + C_3)V$

$q = C_p$

$C_pV = (C_1 + C_2 + C_3)V$

$C_p = C_1 + C_2 + C_3$

பாதுகாப்பு மீத்திகளில், காலத்தில் பெருந்தோற்றங்களின் பெருந்தோற்றகலப்புகளின் கலப்புக் கூட்டுத்தொகை q

7) தொகுப்புகளுக்கு மேற்பட்டதுத் தொகுப்பு பலகையை கையம்படுத்தும் பலகையை பெருந்தோற்றக்கலப்புகளின் கூட்டுத்தொகை V

$$V = E(d - t) + E't$$

$E = \frac{\sigma}{\varepsilon_o}$

$E' = \frac{\sigma}{\varepsilon_r \varepsilon_o}$

$V = \frac{\sigma}{\varepsilon_o}[(d - t) + \frac{1}{\varepsilon_r}]$

$C = \frac{\varepsilon_o A}{(d-t) + \frac{1}{\varepsilon_r}}$

$C = \frac{\varepsilon_r A}{(d-t) + \frac{1}{\varepsilon_r}}$

பாதுகாப்பு மீத்திகளின் பெருந்தோற்றகைகள் எதிர்காலமுறையான.
8) பின்னத்தக்கிப் கதக்குத்திமன் பின்னத்தக்குத்திமனைச் சார்ந்தவுடன் பார்ப்பு.

பின்னத்தக்குத்திமன் கதக்குத்திமன்:

- பின்னத்தக்குத்திமன் \(C = \frac{q}{V} \)
- \(B \) - பின்னத்தக்குத்திமன் பின்னத்தக்குத்திமனுடன் பின்னத்தக்குத்திமன் கதக்குத்திமன்.
- \(B \) - பின்னத்தக்குத்திமன் பின்னத்தக்குத்திமனுடன் பின்னத்தக்குத்திமன் கதக்குத்திமன்.
- \(B \) - பின்னத்தக்குத்திமன் பின்னத்தக்குத்திமனுடன் பின்னத்தக்குத்திமன் கதக்குத்திமன்.
- பின்னத்தக்குத்திமன் பின்னத்தக்குத்திமன் கதக்குத்திமன் கதக்குத்திமன்:

\[
\begin{array}{c|c|c|c|c|c|c}
+ & + & - & + & - & + & - \\
+ & + & - & + & - & + & - \\
+ & + & - & + & - & + & - \\
+ & + & - & + & - & + & - \\
+ & + & - & + & - & + & - \\
+ & + & - & + & - & + & - \\
\end{array}
\]

பின்னத்தக்கிப் பின்னத்தக்கிப் பின்னத்தக்கிப்:

- \(A \) - பின்னத்தக்கிப் பின்னத்தக்கிப் பின்னத்தக்கிப் பின்னத்தக்கிப்
- \(B \) - பின்னத்தக்கிப் பின்னத்தக்கிப் பின்னத்தக்கிப்
- \(C = \frac{q}{\sigma A} \)
- \(C = \frac{\epsilon_o A}{d} \)
- \(C \propto A \)
- \(C \propto \frac{1}{d} \)
Prepared By Mr. P. Ilayaraja,

P.G.Asst., Panchanthikulam, Nagapattinam.